Circles- Marking Scheme

June 2018 Mathematics Advanced Paper 1: Pure Mathematics 1

1.

Question	Scheme	Marks	AOs
3	States or uses $\frac{1}{2}r^2\theta = 11$	Bl	1.1b
	States or uses $2r + r\theta = 4r\theta$	Bl	1.1b
	Attempts to solve, full method $r =$	Ml	3.1a
	$r = \sqrt{33}$	Al	1.1b
			[4]
		(4	marks)

Notes:

B1: States or uses $\frac{1}{2}r^2\theta = 11$ This may be implied with an embedded found value for θ

B1: States or uses $2r + r\theta = 4r\theta$ or equivalent

M1: Full method to find r = ... This involves combining the equations to eliminate θ or find θ The initial equations must be of the same "form" (see **) but condone slips when attempting to solve.

It cannot be scored from impossible values for θ Hence only score if $0 < \theta < 2\pi$ FYI $\theta = \frac{2}{3}$ radians

Allow this to be scored from equations such as $...r^2\theta = 11$ and ones that simplify to $...r = ...r\theta$ **

Allow their
$$2r + r\theta = 4r\theta \Rightarrow \theta = ...$$
 then substitute this into their $\frac{1}{2}r^2\theta = 11$

Allow their
$$2r + r\theta = 4r\theta \Rightarrow r\theta = ...$$
 then substitute this into their $\frac{1}{2}r^2\theta = 11$

Allow their
$$\frac{1}{2}r^2\theta = 11 \Rightarrow \theta = \frac{..}{r^2}$$
 then substitute into their $2r + r\theta = 4r\theta \Rightarrow r = ...$

A1: $r = \sqrt{33}$ only but isw after a correct answer.

The whole question can be attempted using $\boldsymbol{\theta}$ in degrees.

B1: States or uses
$$\frac{\theta}{360} \times \pi r^2 = 11$$

B1: States or uses
$$2r + \frac{\theta}{360} \times 2\pi r = 4 \times \frac{\theta}{360} \times 2\pi r$$

Question	Scheme	Marks	AOs
6 (a)	Deduces that gradient of PA is $-\frac{1}{2}$	M1	2.2a
	Finding the equation of a line with gradient " $-\frac{1}{2}$ " and point (7,5) $y-5=-\frac{1}{2}(x-7)$	M1	1.1b
	Completes proof $2y + x = 17 *$	A1*	1.1b
		(3)	
(b)	Solves $2y + x = 17$ and $y = 2x + 1$ simultaneously	M1	2.1
	P = (3,7)	A1	1.1b
	Length $PA = \sqrt{(3-7)^2 + (7-5)^2} = (\sqrt{20})$	M1	1.1b
	Equation of C is $(x-7)^2 + (y-5)^2 = 20$	A1	1.1b
		(4)	
(c)	Attempts to find where $y = 2x + k$ meets C using $\overrightarrow{OA} + \overrightarrow{PA}$	M1	3.1a
	Substitutes their (11,3) in $y = 2x + k$ to find k	M1	2.1
	k = -19	A1	1.1b
		(3)	
			(10 marks)
(c)	Attempts to find where $y = 2x + k$ meets C via simultaneous equations proceeding to a 3TQ in x (or y) FYI $5x^2 + (4k - 34)x + k^2 - 10k + 54 = 0$	M1	3.1a
	Uses $b^2 - 4ac = 0$ oe and proceeds to $k =$	M1	2.1
	k = -19	A1	1.1b
		(3)	

Notes:

(a)

M1: Uses the idea of perpendicular gradients to deduce that gradient of PA is $-\frac{1}{2}$. Condone $-\frac{1}{2}x$ if followed by correct work. You may well see the perpendicular line set up as $y = -\frac{1}{2}x + c$ which scored this mark

M1: Award for the method of finding the equation of a line with a changed gradient and the point (7,5)

So sight of
$$y-5=\frac{1}{2}(x-7)$$
 would score this mark

If the form y = mx + c is used expect the candidates to proceed as far as c = ... to score this mark.

A1*: Completes proof with no errors or omissions 2y + x = 17

(b)

M1: Awarded for an attempt at the key step of finding the coordinates of point P. ie for an attempt at solving 2y + x = 17 and y = 2x + 1 simultaneously. Allow any methods (including use of a calculator) but it must be a valid attempt to find both coordinates. Do not allow where they start 17 - x = 2x + 1 as they have set 2y = y but condone bracketing errors, eg $2 \times 2x + 1 + x = 17$

A1:
$$P = (3,7)$$

M1: Uses Pythagoras' Theorem to find the radius or radius 2 using their P = (3,7) and (7,5). There must be an attempt to find the difference between the coordinates in the use of Pythagoras

A1:
$$(x-7)^2 + (y-5)^2 = 20$$
. Do not accept $(x-7)^2 + (y-5)^2 = (\sqrt{20})^2$

(c)

M1: Attempts to find where y = 2x + k meets C.

Awarded for using $\overrightarrow{OA} + \overrightarrow{PA}$. (11,3) or one correct coordinate of (11,3) is evidence of this award.

M1: For a full method leading to k. Scored for either substituting their (11,3) in y = 2x + k

or, in the alternative, for solving their $(4k-34)^2-4\times5\times(k^2-10k+54)=0 \Rightarrow k=...$ Allow use of a calculator here to find roots. Award if you see use of correct formula but it would be implied by \pm correct roots

A1: k = -19 only

Alternative I

M1: For solving y = 2x + k with their $(x-7)^2 + (y-5)^2 = 20$ and creating a quadratic eqn of the form $ax^2 + bx + c = 0$ where both b and c are dependent upon k. The terms in x^2 and x must be collected together or implied to have been collected by their correct use in " $b^2 - 4ac$ "

FYI the correct quadratic is $5x^2 + (4k - 34)x + k^2 - 10k + 54 = 0$

M1: For using the discriminant condition $b^2 - 4ac = 0$ to find k. It is not dependent upon the previous M and may be awarded from only one term in k.

$$(4k-34)^2-4\times5\times(k^2-10k+54)=0 \Rightarrow k=...$$
 Allow use of a calculator here to find roots.

Award if you see use of correct formula but it would be implied by \pm correct roots

A1: k = -19 only

Alternative II

M1: For solving 2y + x = 17 with their $(x-7)^2 + (y-5)^2 = 20$, creating a 3TQ and solving.

M1: For substituting their (11,3) into y = 2x + k and finding k

A1: k = -19 only

.....

Other method are possible using trigonometry.

May 2019 Mathematics Advanced Paper 1: Pure Mathematics 1

Question	Scheme	Marks	AOs
10(a)	$x^2 + y^2 - 4x + 8y - 8 = 0$		
	Attempts $(x-2)^2 + (y+4)^2 - 4 - 16 - 8 = 0$	M1	1.1b
	(i) Centre (2,-4)	A1	1.1b
	(ii) Radius $\sqrt{28}$ oe Eg $2\sqrt{7}$	A1	1.1b
		(3)	
(b)	Attempts to add/subtract 'r' from '2' $k = 2 \pm \sqrt{28}$	M1	3.1a
	.10	A1ft	1.1b
		(2)	
		(5	marks)

(a)

M1: Attempts to complete the square. Look for $(x\pm 2)^2 + (y\pm 4)^2$...

If a candidate attempts to use $x^2 + y^2 + 2gx + 2fy + c = 0$ then it may be awarded for a centre of $(\pm 2, \pm 4)$ Condone $a = \pm 2, b = \pm 4$

A1: Centre (2,-4) This may be written separately as x = 2, y = -4 BUT a = 2, b = -4 is A0

A1: Radius $\sqrt{28}$ or $2\sqrt{7}$ isw after a correct answer

(b)

M1: Attempts to add or subtract their radius from their 2.

Alternatively substitutes y = -4 into circle equation and finds x/k by solving the quadratic equation by a suitable method.

A third (and more difficult) method would be to substitute x = k into the equation to form a quadratic eqn in $y \Rightarrow y^2 + 8y + k^2 - 4k - 8 = 0$ and use the fact that this would have one root. E.g. $b^2 - 4ac = 0 \Rightarrow 64 - 4(k^2 - 4k - 8) = 0 \Rightarrow k = ..$ Condone slips but the method must be sound.

A1ft: $k = 2 + \sqrt{28}$ and $k = 2 - \sqrt{28}$ Follow through on their 2 and their $\sqrt{28}$ If decimals are used the values must be calculated. Eg $k = 2 \pm 5.29 \rightarrow k = 7.29$, k = -3.29 Accept just $2 \pm \sqrt{28}$ or equivalent such as $2 \pm 2\sqrt{7}$ Condone $x = 2 + \sqrt{28}$ and $x = 2 - \sqrt{28}$ but not $y = 2 + \sqrt{28}$ and $y = 2 - \sqrt{28}$

May 2018 Mathematics Advanced Paper 1: Pure Mathematics 1

Question	Scheme	Marks	AOs
14 (a)	Attempts to complete the square $(x\pm 3)^2 + (y\pm 5)^2 =$	M1	1.1b
	(i) Centre (3,-5)	A1	1.1b
	(ii) Radius 5	A1	1.1b
		(3)	
(b)	Uses a sketch or otherwise to deduce $k = 0$ is a critical value	B1	2.2a
	Substitute $y = kx$ in $x^2 + y^2 - 6x + 10y + 9 = 0$	M1	3.1a
	Collects terms to form correct 3TQ $(1+k^2)x^2+(10k-6)x+9=0$	A1	1.1b
	Attempts $b^2 - 4ac0$ for their a , b and c leading to values for k $"(10k-6)^2 - 36(1+k^2)0" \rightarrow k =, \qquad \left(0 \text{ and } \frac{15}{8}\right)$	M1	1.1b
	Uses $b^2 - 4ac > 0$ and chooses the outside region (see note) for their critical values (Both <i>a</i> and <i>b</i> must have been expressions in <i>k</i>)	dM1	3.1a
	Deduces $k < 0, k > \frac{15}{8}$ oe	A1	2.2a
		(6)	

(a)

M1: Attempts
$$(x\pm 3)^2 + (y\pm 5)^2 = ...$$

This mark may be implied by candidates writing down a centre of $(\pm 3, \pm 5)$ or $r^2 = 25$

- (i) A1: Centre (3,-5)
- (ii) A1: Radius 5. Do not accept $\sqrt{25}$ Answers only scores all three marks

(b)

B1: Uses a sketch or their subsequent quadratic to deduce that k = 0 is a critical value. You may award for the correct k < 0 but award if $k \le 0$ or even with greater than symbols

M1: Substitutes y = kx in $x^2 + y^2 - 6x + 10y + 9 = 0$ or their $(x \pm 3)^2 + (y \pm 5)^2 = ...$ to form an equation in just x and k. It is possible to substitute $x = \frac{y}{k}$ into their circle equation to form an equation in just y and k.

A1: Correct 3TQ $(1+k^2)x^2 + (10k-6)x + 9 = 0$ with the terms in x collected. The "= 0" can be implied by subsequent work. This may be awarded from an equation such as $x^2 + k^2x^2 + (10k-6)x + 9 = 0$ so long as the correct values of a, b and c are used in $b^2 - 4ac...0$. FYI The equation in y and k is $(1+k^2)y^2 + (10k^2 - 6k)y + 9k^2 = 0$ oe

M1: Attempts to find two critical values for k using $b^2 - 4ac...0$ or $b^2...4ac$ where ... could be "=" or any inequality.

dM1: Finds the outside region using their critical values. Allow the boundary to be included. It is dependent upon all previous M marks and both a and b must have been expressions in k. Note that it is possible that the correct region could be the inside region if the coefficient of k^2 in 4ac is larger than the coefficient of k^2 in b^2 Eg.

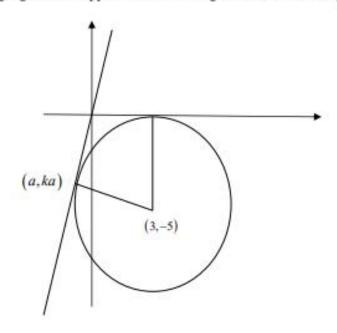
$$b^2 - 4ac = (k-6)^2 - 4 \times (1+k^2) \times 9 > 0 \Rightarrow -35k^2 - 12k > 0 \Rightarrow k(35k+12) < 0$$

A1: Deduces $k < 0, k > \frac{15}{8}$. This must be in terms of k.

Allow exact equivalents such as $k < 0 \cup k > 1.875$

but not allow $0 > k > \frac{15}{8}$ or the above with AND, & or \cap between the two inequalities

Alternative using a geometric approach with a triangle with vertices at (0,0), and (3,-5)



Use	es a sketch or otherwise to deduce $k = 0$ is a critical value	B1	2.2a
Dis	stance from (a,ka) to $(0,0)$ is $3 \Rightarrow a^2(1+k^2) = 9$	MI	3.1a
1000	ngent and radius are perpendicular $k \times \frac{ka+5}{a-3} = -1 \Rightarrow a(1+k^2) = 3-5k$	MI	3.1a
Sol	ve simultaneously, (dependent upon both M's)	dM1	1.1b
	$k = \frac{15}{8}$	A1	1.16
	Deduces $k < 0, k > \frac{15}{8}$	AI	2.2a
		(6)	

May 2017 Mathematics Advanced Paper 1: Pure Mathematics 2

Question number	Scheme	Marks
5	$x^2 + y^2 - 10x + 6y + 30 = 0$	
(a)	Uses any appropriate method to find the coordinates of the centre, e.g achieves $(x \pm 5)^2 + (y \pm 3)^2 = \dots$ Accept $(\pm 5, \pm 3)$ as indication of this.	MI

	Centre is $(5, -3)$.		A1	(2)
(b) Way 1	Uses $(x \pm "5")^2 - "5^2" + (y \pm "3")^2 - r = \sqrt{"25" + "9" - 30}$ or $r^2 = "25" + r^2 = r^2 + r^2 = r^2 + r^2 = r^2 + r^2 = $	$-"3^2" + 30 = 0$ to give -"9"-30 (not $30 - 25 - 9$)	M1	
	r=2		Alcao	
Or Way 2	Using $\sqrt{g^2 + f^2 - c}$ from $x^2 + y^2 + $ stated or correct working)	-2gx + 2fy + c = 0 (Needs formula	M1	(2)
	r=2		A1	
				(2)
(c) Way I	Use $x = 4$ in <i>an</i> equation of circle and	obtain equation in y only	M1	
	e.g $(4-5)^2 + (y+3)^2 = 4$ or	$4^2 + y^2 - 10 \times 4 + 6y + 30 = 0$		
	Solve their quadratic in y and obtain t	wo solutions for y	dM1	
	e.g. $(y+3)^2 = 3$ or $y^2 + 6y + 6 = 0$	0 so $y = -3 \pm \sqrt{3}$	A1	(3)
Or Way 2		Divide triangle PTQ and use Pythagoras with " r " ² -("5"-4) ² = h ² ,	M1	
	n T	Find h and evaluate " -3 " $\pm h$. May recognise $(1,\sqrt{3}, 2)$ triangle.	dM1	
		So $y = -3 \pm \sqrt{3}$		
	P		A1	(2)
	-			(3) [7]

Question Number	Sch	eme	Marks
2 (a)	Way 1 $(x \text{ m2})^2 + (y \pm 1)^2 = k, k > 0$ Attempts to use $r^2 = (4-2)^2 + (-5+1)^2$ Obtains $(x-2)^2 + (y+1)^2 = 20$	$x^2 + y^2 - 4x + 2y - 15 = 0$	M1 M1 A1 (3)
(b) Way 1	N.B. Special case: $(x-2)^2 - (y+1)^2 = 20$ is Gradient of radius from centre to $(4, -5) = -2$ Tangent gradient = $-\frac{1}{\text{their numerical gradie}}$ Equation of tangent is $(y+5) = \frac{1}{2}(x-4)$ So equation is $x-2y-14=0$ (or $2y-x+14$)	(must be correct) nt of radius	BI MI MI AI
b)Way 2	Quotes $xx' + yy' - 2(x + x') + (y + y') - 15 = 4x - 5y - 2(x + 4) + (y - 5) - 15 = 0$ so $2x - 4x - 5y - 2(x + 4) + (y - 5) - 15 = 0$ Use differentiation to find expression for grad	0 and substitutes $(4, -5)$ _ 4y - 28 = 0 (or alternatives as in Way 1)	(4) B1 M1,M1A1 (4)
b) way 3	Either $2(x-2) + 2(y+1)\frac{dy}{dx} = 0$ or states $y = 0$ Substitute $x = 4$, $y = -5$ after valid differentiati Then as Way 1 above $(y+5) = \frac{1}{2}(x-4)$ so	$-1 - \sqrt{20 - (x - 2)^2}$ so $\frac{dy}{dx} = \frac{(x - 2)}{\sqrt{20 - (x - 2)^2}}$ on to give gradient =	B1 M1 M1 A1 (4)

Notes

(a) M1: Uses centre to write down equation of circle in one of these forms. There may be sign slips as shown.

M1: Attempts distance between two points to establish r^2 (independent of first M1)- allow one sign slip only using distance formula with -5 or -1, usually (-5-1) in 2^{nd} bracket. Must not identify this distance as diameter.

This mark may alternatively (e.g. way 2)be given for substituting (4, -5) into a **correct circle** equation with one unknown Can be awarded for $r = \sqrt{20}$ or for $r^2 = 20$ stated or implied but not for $r^2 = \sqrt{20}$ or r = 20 or $r = \sqrt{5}$

A1: Either of the answers printed or correct equivalent e.g. $(x-2)^2 + (y+1)^2 = (2\sqrt{5})^2$ is A1 but $2\sqrt{5}^2$ (no bracket) is A0 unless there is recovery

Also $(x-2)^2 + (y-(-1))^2 = (2\sqrt{5})^2$ may be awarded M1M1A1as a correct equivalent.

N.B. $(x-2)^2 + (y+1)^2 = 40$ commonly arises from one sign error evaluating r and earns M1M1A0

(b) Way 1:

B1: Must be correct answer -2 if evaluated (otherwise may be implied by the following work)

M1: Uses negative reciprocal of their gradient

M1: Uses $y - y_1 = m(x - x_1)$ with (4,-5) and their **changed** gradient **or** uses y = mx + c and (4, -5) with their changed gradient (not gradient of radius) to find c

A1: answers in scheme or multiples of these answers (must have "= 0"). NB Allow 1x - 2y - 14 = 0

N.B. $(y+5) = \frac{1}{2}(x-4)$ following gradient of is $\frac{1}{2}$ after errors leads to x-2y-14=0 but is worth B0M0M0A0

Way 2: Alternative method (b) is rare.

Way 3: Some may use implicit differentiation to differentiate- others may attempt to make y the subject and use chain rule B1: the differentiation must be accurate and the algebra accurate too. Need to take (-) root not (+) root in the alternative

M1: Substitutes into their gradient function but must follow valid accurate differentiation

M1: Must use "their" tangent gradient and y+5=m(x-4) but allow over simplified attempts at differentiation for this mark. A1: As in Way 1

Question Number	Scheme	Marks
Nullibei	Mark (a) and (b) together	
9. (a)	Uses the addition form of Pythagoras on $6\sqrt{5}$ and 4. Condone missing brackets on $(6\sqrt{5})^2 + 4^2$ or $OQ = \sqrt{(6\sqrt{5})^2 + 4^2}$ {= 14} Working or 14 may be seen on the diagram)	M1
	$y_Q = \sqrt{14^2 - 11^2}$ $y_Q = \sqrt{(\text{their } OQ)^2 - 11^2}$ Must include $\sqrt{\text{and is dependent on the first M1 and requires OQ} > 11}$	dM1
	$= \sqrt{75} \text{ or } 5\sqrt{3} \qquad \qquad \sqrt{75} \text{ or } 5\sqrt{3}$	Alcso
		[3]
(b)	M1: $(x \pm 11)^2 + (y \pm \text{their } k)^2 = 4^2$ Equation must be of this form and must use x and y not other letters. k could be their last answer to part (a). Allow their $k \neq 0$ or just the letter k . A1: $(x-11)^2 + (y-5\sqrt{3})^2 = 16$ or $(x-11)^2 + (y-5\sqrt{3})^2 = 4^2$ NB $5\sqrt{3}$ must come from correct work in (a) and allow awrt 8.66	- M1A1
	Allow in expanded form for the final A1 e.g. $x^2 - 22x + 121 + y^2 - 10\sqrt{3}y + 75 = 16$	
	e.g. $x - 22x + 121 + y - 10 + 73 = 10$	[2]
		Total 5
	Watch out for:	
	(a) $OQ = \sqrt{(6\sqrt{5})^2 + 4^2} = \sqrt{46} \text{ M1}$ $y_Q = \sqrt{46 - 11^2} \text{ M0 (OQ < 11)}$ $y_Q = \sqrt{75} \text{ A0}$ (b) $(x - 11)^2 + (y - 5\sqrt{3})^2 = 16 \text{ M1A0}$	

Question Number	Scheme	Marks
10. (a)		
	Equation of form $(x \pm 5)^2 + (y \pm 9)^2 = k$, $k > 0$	M1
	Equation of form $(x - a)^2 + (y - b)^2 = 5^2$, with values for a and b	M1
	$(x+5)^2 + (y-9)^2 = 25 = 5^2$	A1
		(3)
	P(8, -7). Let centre of circle = $X(-5, 9)$	
(b)	$PX^2 = (85)^2 + (-7 - 9)^2 \text{ or } PX = \sqrt{(8 - 5)^2 + (-7 - 9)^2}$	M1
	$(PX = \sqrt{425} \text{ or } 5\sqrt{17})$ $PT^2 = (PX)^2 - 5^2 \text{ with numerical } PX$	dM1
	$PT \left\{ = \sqrt{400} \right\} = 20$ (allow 20.0)	A1 cso
		(3)
		[6]
Alternative 2 for (a)	Equation of the form $x^2 + y^2 \pm 10x \pm 18y + c = 0$	M1
2 101 (a)	Uses $a^2 + b^2 - 5^2 = c$ with their a and b or substitutes (0, 9) giving $+9^2 \pm 2b \times 9 + c = 0$	M1
	$x^2 + y^2 + 10x - 18y + 81 = 0$	A1
	2 1 y 1102 10y 101 = 0	(3)
	An attempt to find the point T may result in pages of algebra, but solution needs to reach	(0)
Alternative	$(-8, 5)$ or $\left(\frac{-8}{17}, 11\frac{2}{17}\right)$ to get first M1 (even if gradient is found first)	M1
2 for (b)	$(-8, 5)$ or $\left(\frac{17}{17}, \frac{11}{17}\right)$ to get first M1 (even if gradient is found first)	
	M1: Use either of the correct points with $P(8, -7)$ and distance between two points	dM1
	formula	
	A1: 20	Alcso (3)
Alternative	Substitutes (8, -7) into circle equation so $PT^2 = 8^2 + (-7)^2 + 10 \times 8 - 18 \times (-7) + 81$	MI
3 for (b)		
	Square roots to give $PT \left\{ = \sqrt{400} \right\} = 20$	dM1A1 (3)
	Notes for Question 10	
	The three marks in (a) each require a circle equation - (see special cases which are not	
(a)	M1: Uses coordinates of centre to obtain LHS of circle equation (RHS must be r^2 or $k > 0$	or a
	positive value) MI, Uses v = 5 to obtain BHS of single equation as 25 or 5 ²	
	M1: Uses $r = 5$ to obtain RHS of circle equation as 25 or 5^2 A1: correct circle equation in any equivalent form	
	Special cases $(x \pm 5)^2 + (x \pm 9)^2 = (5^2)$ is not a circle equation so M0M0A0	
	Also $(x \pm 5)^2 + (y-9) = (5^2)$ And $(x \pm 5)^2 - (y \pm 9)^2 = (5^2)$ are not circles and gain M0M	0A0
	But $(x-0)^2 + (y-9)^2 = 5^2$ gains M0M1A0	
(b)	M1: Attempts to find distance from their centre of circle to P (or square of this value). If the	his is
	called PT and given as answer this is M0. Solution may use letter other than X, as centre was	
	labelled in the question. N.B. Distance from (0, 9) to (8, -7) is incorrect method and is M0, followed by M0A0.	
	dM1: Applies the subtraction form of Pythagoras to find PT or PT^2 (depends on previous r	method
	mark for distance from centre to P) or uses appropriate complete method involving trigono	
	A1: 20 cso	-

Question Number	Scheme		Marks
5.			
(a)	Parts (i) and (ii) are likely to be sol		
(i)	The centre is at (10, 12)	B1: $x = 10$ B1: $y = 12$	B1 B1
(ii)	Uses $(x-10)^2 + (y-12)^2 =$	$-195 + 100 + 144 \Rightarrow r = \dots$	M1
	Completes the square for both a		
	$(x \pm "10")^2 \pm a$ and $(y \pm "12")^2$ Allow slips in obtaining their		
	$r = \sqrt{10^2 + 12^2 - 195}$	A correct numerical expression for r including the square root and can implied by a correct value for r	A1
	r = 7	Not $r = \pm 7$ unless – 7 is rejected	A1
			(5)
	Compares the given equation with $x^2 + y^2 + 2gx + 2fy + c = 0$ to write	B1: $x = 10$	B1B1
(a) Way 2	down centre $(-g, -f)$ i.e. $(10, 12)$	B1: <i>y</i> = 12	БІБІ
	Uses $r = \sqrt{(\pm "10")^2 + (\pm "12")^2 - c}$		M1
	$r = \sqrt{10^2 + 12^2 - 195}$	A correct numerical expression for r	A1
	r = 7		A1
			(5)
	Note that although the marks for the come from correct work. E.g. $(x+10)$ (10, 12) scores B0 B0 but could score special case. Similarly $(x+10)^2$, $(y-10)^2$	$(y+12)^2$ giving a centre of the M1A1ftA1ft for the radius as a	
	scores B0 B1, $(x-10)^2$, $(y+12)^2$ givin	ng a centre of (10, -12) scores B1 B0	
	but both could score M1A1ftA1ft for		
(b)	$MN = \sqrt{(25 - "10")^2 + (32 - "12")^2}$	Correct use of Pythagoras	M1
	$MN\left(=\sqrt{625}\right)=25$		A1
(c)	$NP = \sqrt{("25"^2 - "7"^2)}$	$NP = \sqrt{(MN^2 - r^2)}$	M1 (2)
(4)	$NP = \sqrt{(25^2 + 7^2)}$ is 1	,	
	$NP\left(=\sqrt{576}\right)=24$,	A1
	,		(2)
(c) Way 2	$\cos(NMP) = \frac{7}{"25"} \Rightarrow NP = "25" \sin(NR)$	MP) Correct strategy for finding NP	M1
	NP = 24		A1
	111 - 24		(2)

10

Question number	Scheme	Marks
3	Obtain $(x \pm 10)^2$ and $(y \pm 8)^2$	MI
(a)	Obtain $(x-10)^2$ and $(y-8)^2$	A1
	Centre is (10, 8). N.B. This may be indicated on diagram only as (10, 8)	A1 (3)
(b)	See $(x \pm 10)^2 + (y \pm 8)^2 = 25 (= r^2)$ or $(r^2 =)$ "100"+"64"-139	M1
	r = 5 * (this is a printed answer so need one of the above two reasons)	A1 (2)
(c)	Use $x = 13$ in either form of equation of circle and solve resulting quadratic to give $y =$	М1
	e.g $x=13 \Rightarrow (13-10)^2 + (y-8)^2 = 25 \Rightarrow (y-8)^2 = 16$ or $13^2 + y^2 - 20 \times 13 - 16y + 139 = 0 \Rightarrow y^2 - 16y + 48 = 0$	
	y = 4 or 12 (on EPEN mark one correct value as A1A0 and both correct as A1A1)	A1, A1 (3)
(d)	Use of $r\theta$ with $r = 5$ and $\theta = 1.855$ (may be implied by 9.275)	M1
	Perimeter $PTQ = 2r + \text{their } \text{arc } PQ$ (Finding perimeter of triangle is M0 here)	M1
	= 19.275 or 19.28 or 19.3	A1 (3)
		11 marks
Alternatives (a)	Method 2: From $x^2 + y^2 + 2gx + 2fy + c = 0$ centre is $(\pm g, \pm f)$ Centre is $(-g, -f)$, and so centre is $(10, 8)$.	M1 A1, A1
OR	Method 3: Use any value of y to give two points (L and M) on circle. x co-ordinate of mid point of LM is "10" and Use any value of x to give two points (P and Q) on circle. y co-ordinate of mid point of PQ is "8" (Centre – chord theorem). (10,8) is M1A1A1	M1 A1 A1 (3)
(b)	Method 2: Using $\sqrt{g^2 + f^2 - c}$ or $(r^2 =)$ "100"+"64"-139 r = 5 *	M1 A1
OR	Method 3: Use point on circle with centre to find radius. Eg $\sqrt{(13-10)^2+(12-8)^2}$ r=5 *	M1 A1 cao
(c)	Divide triangle PTQ and use Pythagoras with $r^2 - (13 - 10)^2 = h^2$, then evaluate "8 $\pm h$ " - (N.B. Could use 3,4,5 Triangle and 8 ± 4). Accuracy as before	M1

Notes	Mark (a) and (b) together M1 as in scheme and can be implied by $(\pm 10, \pm 8)$. Correct centre (10, 8) implies M1A1A1
(a)	
(b)	M1 for a correct method leading to $r =$, or $r^2 = "100" + "64" - 139 \pmod{139 - "100" - "64"}$
	or for using equation of circle in $(x \pm 10)^2 + (y \pm 8)^2 = k^2$ form to identify $r = 1$
	3^{rd} A1 $r = 5$ (NB This is a given answer so should follow $k^2 = 25$ or $r^2 = 100 + 64 - 139$)
	Special case : if centre is given as $(-10, -8)$ or $(10, -8)$ or $(-10, 8)$ allow M1A1 for $r = 5$ worked correctly
	as $r^2 = 100 + 64 - 139$
(d)	Full marks available for calculation using major sector so Use of $r\theta$ with $r=5$ and $\theta=4.428$ leading to perimeter of 32.14 for major sector

Jan 2012 Mathematics Advanced Paper 1: Pure Mathematics 2

Question number	Scheme	Marks	
2	The equation of the circle is $(x+1)^2 + (y-7)^2 = (r^2)$	M1 A1	
	The radius of the circle is $\sqrt{(-1)^2 + 7^2} = \sqrt{50}$ or $5\sqrt{2}$ or $r^2 = 50$	M1	
	So $(x+1)^2 + (y-7)^2 = 50$ or equivalent	A1 (4)	
		4	
Notes	Notes M1 is for this expression on left hand side—allow errors in sign of 1 and 7. A1 correct signs (just LHS)		
	M1 is for Pythagoras or substitution into equation of circle to give r or r^2 Giving this value as diameter is M0		
	A1, cao for cartesian equation with numerical values but allow $(\sqrt{50})^2$ or $(5\sqrt{2})^2$ or any exact equivalent		
	A correct answer implies a correct method – so answer given with no working earns all four marks for this question.		
Alternative method	Equation of circle is $x^2 + y^2 \pm 2x \pm 14y + c = 0$	M1	
	Equation of circle is $x^2 + y^2 + 2x - 14y + c = 0$	A1	
	Uses (0,0) to give $c = 0$, or finds $r = \sqrt{(-1)^2 + 7^2} = \sqrt{50}$ or $5\sqrt{2}$ or $r^2 = 50$ So $x^2 + y^2 + 2x - 14y = 0$ or equivalent	M1 A1	

Question Number	Scheme	Marks	
4.	$x^2 + y^2 + 4x - 2y - 11 = 0$		
(a)	$\left\{ (x+2)^2 - 4 + (y-1)^2 - 1 - 11 = 0 \right\}$ (±2, ±1), see notes.	M1	
	Centre is $(-2, 1)$. $(-2, 1)$.	A1 cao [2]	
(b)	$(x+2)^2 + (y-1)^2 = 11 + 1 + 4$ $r = \sqrt{11 \pm "1" \pm "4"}$	M1	
	So $r = \sqrt{11 + 1 + 4} \implies r = 4$ 4 or $\sqrt{16}$ (Award A0 for ± 4).	A1 [2]	
(a)	When $x = 0$, $y^2 - 2y - 11 = 0$ Putting $x = 0$ in C or their C .	M1	
(c)	$y^2 - 2y - 11 = 0$ or $(y - 1)^2 = 12$, etc	Al aef	
	$y = \frac{2 \pm \sqrt{(-2)^2 - 4(1)(-11)}}{2(1)} \left\{ = \frac{2 \pm \sqrt{48}}{2} \right\}$ Attempt to use formula or a method of completing the square in order to find $y = \dots$	M1	
		Al cao cso	
	So, $y = 1 \pm 2\sqrt{3}$ $1 \pm 2\sqrt{3}$		
		[4]	
	Note: Please mark parts (a) and (b) together. Answers only in (a) and/or (b) get full mar		
	Note in part (a) the marks are now M1A1 and not B1B1 as on ePEN.	K3.	
(a)	M1: for $(\pm 2, \pm 1)$. Otherwise, M1 for an attempt to complete the square eg. $(x \pm 2)^2 \pm \alpha$, α	≠ 0 or	
	$(y \pm 1)^2 \pm \beta$, $\beta \neq 0$. M1A1: Correct answer of $(-2, 1)$ stated from any working gets M1A	l.	
(b)	M1: to find the radius using 11, "1" and "4", ie. $r = \sqrt{11 \pm "1" \pm "4"}$. By applying this method	nod candidates	
	will usually achieve $\sqrt{16}$, $\sqrt{6}$, $\sqrt{8}$ or $\sqrt{14}$ and not 16, 6, 8 or 14.		
	Note: $(x+2)^2 + (y-1)^2 = -11 - 5 = -16 \Rightarrow r = \sqrt{16} = 4$ should be awarded M0A0.		
	Alternative: M1 in part (a): For comparing with $x^2 + y^2 + 2gx + 2fy + c = 0$ to write down	centre	
	$(-g, -f)$ directly. Condone sign errors for this M mark. M1 in part (b): For using $r = \sqrt{g^2 + f^2 - c}$.		
	Condone sign errors for this method mark.	-	
	$(x+2)^2 + (y-1)^2 = 16 \implies r = 8$ scores M0A0, but $r = \sqrt{16} = 8$ scores M1A1 isw.		
(c)	1st M1: Putting $x = 0$ in either $x^2 + y^2 + 4x - 2y - 11 = 0$ or their circle equation usually given	en in part (a) or	
	part (b). 1st A1 for a correct equation in y in any form which can be implied by later working	_	
	2^{nd} M1: See rules for using the formula. Or completing the square on a 3TQ to give $y = a \pm \sqrt{b}$, where		
	\sqrt{b} is a surd, $b \neq$ their 11 and $b > 0$. This mark should not be given for an attempt to factorise.		
	2^{nd} A1: Need exact pair in simplified surd form of $\{y = \}$ $1 \pm 2\sqrt{3}$. This mark is also cso.	_	
	Do not need to see $(0, 1 + 2\sqrt{3})$ and $(0, 1 - 2\sqrt{3})$. Allow 2^{nd} A1 for bod $(1 + 2\sqrt{3}, 0)$ and $(1 - 2\sqrt{3})$.	$-2\sqrt{3},0$).	
	Any incorrect working in (c) gets penalised the final accuracy mark. So, <u>beware:</u> incorrect		
	$(x-2)^2 + (y-1)^2 = 16$ leading to $y^2 - 2y - 11 = 0$ and then $y = 1 \pm 2\sqrt{3}$ scores M1A1M1. Special Case for setting $y = 0$: Award SC: M0A0M1A0 for an attempt at applying the formula		
	Award SC: M0A0M1A0 for com	pleting the	
	$r = \frac{-4 \pm \sqrt{(-4)^2 - 4(1)(-11)}}{\sqrt{(-4)^2 - 4(1)(-11)}} = \frac{-4 \pm \sqrt{60}}{\sqrt{60}} = -2 \pm \sqrt{15}$ square to their equation in x which	h will usually	
	$x = \frac{-4 \pm \sqrt{(-4)^2 - 4(1)(-11)}}{2(1)} \left\{ = \frac{-4 \pm \sqrt{60}}{2} = -2 \pm \sqrt{15} \right\} $ square to their equation in x which be $x^2 + 4x - 11 = 0$ to give $a \pm \sqrt{b}$ is a surd, $b \neq 1$ their 11 and $b > 1$	\sqrt{b} , where	
	Special Case: For a candidate not using \pm but achieving one of the correct answers then awar SC: M1A1 M1A0 for one of either $y = 1 + 2\sqrt{3}$ or $y = 1 - 2\sqrt{3}$ or $y = 1 + \sqrt{12}$ or $y = 1 - \sqrt{3}$		
	35. Intribitation one of educity $y = 1 + 2\sqrt{3}$ of $y = 1 - 2\sqrt{3}$ of $y = 1 + \sqrt{12}$ of $y = 1 - \sqrt{3}$	Y12.	

find x = 10.

13.

Question Number	Scheme	Marks	
9.			
	$C\left(\frac{-2+8}{2}, \frac{11+1}{2}\right) = C(3, 6)$ AG Correct method (no errors) for finding the mid-point of <i>AB</i> giving (3, 6)	B1*	
(b)	$(8-3)^2 + (1-6)^2$ or $\sqrt{(8-3)^2 + (1-6)^2}$ or Applies distance formula in order to find the radius. $(-2-3)^2 + (11-6)^2$ or $\sqrt{(-2-3)^2 + (11-6)^2}$ Correct application of	(1) M1	
	formula. $(x \pm 3)^{2} + (y \pm 6)^{2} = 50 \left(\text{or} \left(\sqrt{50} \right)^{2} \text{ or } \left(5\sqrt{2} \right)^{2} \right)$ $(x \pm 3)^{2} + (y \pm 6)^{2} = k,$ $k \text{ is a positive } \underline{\text{value}}.$ $(x - 3)^{2} + (y - 6)^{2} = 50 \text{ (Not } 7.07^{2})$		
(c)	{For $(10, 7)$,} $(10-3)^2 + (7-6)^2 = 50$, {so the point lies on C.}	<u>B1</u> (1)	
(d)	{Gradient of radius} = $\frac{7-6}{10-3}$ or $\frac{1}{7}$ This must be seen in part (d).	B1	
	Gradient of tangent = $\frac{-7}{1}$ Using a perpendicular gradient method.	M1	
	y - 7 = -7(x - 10) $y - 7 = (their gradient)(x - 10)$	M1	
	y = -7x + 77 $y = -7x + 77$ or $y = 77 - 7x$	A1 cao	
		(4) [10]	
	<u>Notes</u>		
(a)	Alternative method: $C\left(-2 + \frac{82}{2}, 11 + \frac{1-11}{2}\right)$ or $C\left(8 + \frac{-2-8}{2}, 1 + \frac{11-1}{2}\right)$		
(b)	You need to be convinced that the candidate is attempting to work out the radius and diameter of the circle to award the first M1. Therefore allow 1 st M1 generously for	not the	
	$\frac{(-2-8)^2 + (11-1)^2}{2}$		
	Award 1 st M1A1 for $\frac{(-2-8)^2 + (11-1)^2}{4}$ or $\frac{\sqrt{(-2-8)^2 + (11-1)^2}}{2}$.		
(6)	Correct answer in (b) with no working scores full marks.		
(c)	B1 awarded for correct verification of $(10-3)^2 + (7-6)^2 = 50$ with no errors.		

Also to gain this mark candidates need to have the correct equation of the circle either from part (b) or re-attempted in part (c). They cannot verify (10, 7) lies on C without a correct C. Also a candidate could either substitute x = 10 in C to find y = 7 or substitute y = 7 in C to

Question Number	Scheme	Marks
(d)	2^{nd} M1 mark also for the complete method of applying 7= (their gradient)(10) + c, find	ding c.
	Note : Award 2^{nd} M0 in (d) if their numerical gradient is either 0 or ∞ .	
	Alternative: For first two marks (differentiation):	
	$2(x-3) + 2(y-6)\frac{dy}{dx} = 0$ (or equivalent) scores B1.	
	1 st M1 for substituting both $x = 10$ and $y = 7$ to find a value for $\frac{dy}{dx}$, which must contain by	
	x and y. (This M mark can be awarded generously, even if the attempted "differentia not "implicit".)	tion" is
	Alternative: $(10-3)(x-3) + (7-6)(y-6) = 50$ scores B1M1M1 which leads to	
	y = -7x + 77.	

Jun 2010 Mathematics Advanced Paper 1: Pure Mathematics 2

Question Number	Scheme	Marks
10	(a) $(10-2)^2 + (7-1)^2$ or $\sqrt{(10-2)^2 + (7-1)^2}$	M1 A1
	$(x \pm 2)^2 + (y \pm 1)^2 = k$ (k a positive <u>value</u>)	M1
	$(x-2)^2 + (y-1)^2 = 100$ (Accept 10^2 for 100)	A1
	(Answer only scores full marks)	(4)
	(b) (Gradient of radius =) $\frac{7-1}{10-2} = \frac{6}{8}$ (or equiv.) Must be seen in part (b)	B1
	Gradient of tangent = $\frac{-4}{3}$ (Using perpendicular gradient method)	M1
	$y-7 = m(x-10)$ Eqn., in any form, of a line through (10, 7) with any numerical gradient (except 0 or ∞)	M1
	$y-7=\frac{-4}{3}(x-10)$ or equiv (ft gradient of <u>radius</u> , dep. on <u>both</u> M marks)	A1ft
	${3y = -4x + 61}$ (N.B. The A1 is only available as <u>ft</u> after B0) The unsimplified version scores the A mark (isw if necessary subsequent mistakes in simplification are not penalised here. The equation must at some stage be <u>exact</u> , not, e.g. $y = -1.3x + 20.3$	
		(4)
	(c) $\sqrt{r^2 - \left(\frac{r}{2}\right)^2}$ Condone sign slip if there is evidence of correct use of Pythag.	M1
	$=\sqrt{10^2-5^2}$ or numerically exact equivalent	A1
	$PQ = 2\sqrt{75} = 10\sqrt{3}$ Simplest surd form $10\sqrt{3}$ required for final mark	A1
		(3) 11

(b) 2nd M: Using (10, 7) to find the equation, in any form, of a straight line through (10, 7), with any numerical gradient (except 0 or ∞).
Alternative: 2nd M: Using (10, 7) and an m value in y = mx + c to find a value of c.
(b) Alternative for first 2 marks (differentiation): 2(x-2)+2(y-1) dy/dx = 0 or equiv. B1
Substitute x = 10 and y = 7 to find a value for dy/dx M1
(This M mark can be awarded generously, even if the attempted 'differentiation' is not 'implicit').
(c) Alternatives:

To score M1, must be a fully correct method to obtain 1/2 PQ or PQ.
1st A1: For alternative methods that find PQ directly, this mark is for an exact numerically correct version of PQ.

Jan 2010 Mathematics Advanced Paper 1: Pure Mathematics 2

Questi Numb		Scheme	Mar	rks	
Q8	(a)	N(2,-1)	B1, B1		
	(b)	$r = \sqrt{\frac{169}{4}} = \frac{13}{2} = 6.5$	B1	(2)	
	(c)	Complete Method to find x coordinates, $x_2 - x_1 = 12$ and $\frac{x_1 + x_2}{2} = 2$ then solve	M1		
		To obtain $x_1 = -4$, $x_2 = 8$	A1ft A	1ft	
		Complete Method to find y coordinates, using equation of circle or Pythagoras i.e. let d be the distance below N of A then $d^2 = 6.5^2 - 6^2 \implies d = 2.5 \implies y =$	M1		
		So $y_2 = y_1 = -3.5$	A1	(5)	
	(d)	Let $A\hat{N}B = 2\theta \implies \sin \theta = \frac{6}{"6.5"} \implies \theta = (67.38)$	M1		
		So angle ANB is 134.8 *	A1	(2)	
	(e)	AP is perpendicular to AN so using triangle ANP $\tan \theta = \frac{AP}{"6.5"}$	M1		
		Therefore $AP = 15.6$	A1cao	(2)	
				[12]	

(a) B1 for 2 (
$$\alpha$$
), B1 for -1

- (b) B1 for 6.5 o.e.
- (c) 1^{st} M1 for finding x coordinates may be awarded if either x co-ord is correct A1ft,A1ft are for $\alpha 6$ and $\alpha + 6$ if x coordinate of N is α 2^{nd} M1 for a method to find y coordinates may be given if y co-ordinate is correct A marks is for –3.5 only.
- (d) M1 for a full method to find θ or angle ANB (eg sine rule or cosine rule directly or finding another angle and using angles of triangle.) **ft their 6.5 from radius or wrong y.**

$$(\cos ANB = \frac{"6.5"^2 + "6.5"^2 - 12^2}{2 \times "6.5" \times "6.5"} = -0.704)$$

A1 is a printed answer and must be 134.8 - do not accept 134.76.

(e) M1 for a full method to find AP

Alternative Methods

 $\overline{\text{N.B. May use triangle } AXP}$ where X is the mid point of AB. Or may use triangle ABP. From circle theorems may use angle BAP = 67.38 or some variation.

Eg
$$\frac{AP}{\sin 67.4} = \frac{12}{\sin 45.2}$$
, $AP = \frac{6}{\sin 22.6}$ or $AP = \frac{6}{\cos 67.4}$ are each worth M1